涡街流量计存在的问题以及前置放大电路的意义由于涡街流量计具有原理及结构相对简单,程范围宽,无机械可动部件,压力损失小,流量测量几乎不受流体组成、密度、粘度、压力等因素的影响,测量精度较高等*特的优点,因此在较近几年得到了飞速的发展,广泛应用于化工、食品、制药、造酒等产业的液体、气体和蒸汽的流量测量田。但在另外方面,涡街流量计的发展时间相对较短,其本身仍然有一些问题没有得到很好的解决。目前困扰着人们的主要是两方面问题:一是由于涡街流量计的使用现场环境较为复杂,流体的冲击,管道的振动,以及周围存在的电磁场,都对流量的测量造成了较大的干扰,这一问题目前只能通过高性能的信号放大电路进行解决;二是虽然涡街流量计的测量量程宽,但在实际应用中,其对小流量的反应并不敏感,涡街流量计现货,产生的压电信号较弱,使得流量测量准确度下降和抗干扰能力均大幅下降。为了提高小流量的测量精度,目前人们大多采用变径管缩径的方法提高测量处管道内流体的流速,以使管道内流体流速能够达到使涡街流量计正常工作的范围。但这种方法必须在变径处与测量仪表之间安装大于15倍管径长度的直管段进行整流,否则在变径处所产生大量旋转流团会增加流量计的测量干扰,但安装过长直管段的同时也将给流量计的安装和使用造成较大的不便,因此第二方面问题的解决较终也要依靠高性能的信号放大电路才能够得以解决
涡街流量计的测量原理
涡街流量计作为一种新型流量计,20世纪80年代中期以来发展较快,它在流量测量方面有着诸多的优点和长处,在现代流量测量中应用越来越广泛。在国内使用涡街流量计进行流量测量也愈来愈得到重视,目前我国已有性能优良并有自主知识产权的产品系列。
涡街流量计的原理是在流量计管道中,设置一滞流件,当流体流经滞流件时,由于滞流件表面的滞流作用等原因,在其下游会产生两列不对称的旋涡,这些旋涡在滞流件的侧后方分开,形成所谓的卡门(Karman)旋涡列,两列旋涡的旋转方向是相反的, 卡门从理论上证明了当h/L=0.281(h为两旋涡列之间的宽度,L为两个相临旋涡间的距离)时,旋涡列是稳定的,在此情况下,产生旋涡的频率f与流量计管道中流体流速υ的关系为:
式中 d———圆柱形滞流件的直径;
υ———流体的流速,涡街流量计厂,m/s;
s———无量纲常数,称为Stroual数,与流体流动状态的雷诺数Re有关。
流量计圆截面管道的雷诺数Re为:
式中 ρ———流体的密度,黄山涡街流量计,kg/m3;
μ———流体的动力粘度,(kg/m)/s;
其他符号意义同上。而流体的流量为:
式中 Q———管道流体的流量,m3/s;
A———管道断面积,m2。
从上式可见,涡街流量计选型设计完毕,流量Q不仅与f有关,而且与雷诺数Re也有关。雷诺数Re是表征粘性流体流动特性的一个无量纲数,其物理意义是流体流动的惯性力与粘滞力的比值。旋涡发生所产生的旋涡频率需由感测器来测定,感测器获得的信号经放大、滤波zheng形等处理后得到代表涡街频率的脉冲信号,供单片机进行处理和显示。感测器分流体振荡感测和压力变化感测两大类。流体振荡感测属于接触式,控测元件易受流体污染,但抗干扰能力强;压力变化感测属于非接触式,探测元件不易受流体污染,但易受振动等因素的干扰。流体的流动状态对涡街流量计的使用也有一定的影响。如果环境参数对流体流动状态有影响也会影响到涡街流量计的使用性能。